Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.
Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.
Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Innovative insole ODM solutions in China
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.One-stop OEM/ODM solution provider China
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.One-stop OEM/ODM manufacturing factory and solution provider
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Vietnam insole ODM service provider
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Indonesia foot care insole ODM expert
Synonymous mutations have long been thought to have relatively no impact. A New Study Finds That Most “Silent” Mutations Are Harmful Rather Than Neutral Marshall Nirenberg, a University of Michigan alumni, and a small group of researchers cracked the genetic code of life in the early 1960s, figuring out the rule by which information stored in DNA molecules is converted into proteins, the functional components of living cells. They discovered three-letter DNA units called codons that describe each of the 20 amino acids that make up proteins. This discovery would win Nirenberg and two others the Nobel Prize. Occasionally, single-letter misspellings in the genetic code, known as point mutations, occur. Nonsynonymous mutations are point modifications that alter the protein sequences that result from them, while silent or synonymous mutations do not change the protein sequences. One-quarter to one-third of protein-coding DNA sequence point mutations are synonymous. They have often been thought to be neutral or almost neutral mutations ever since the genetic code was deciphered. Synonymous Mutations Are Not Neutral But in a study recently published in Nature that involved the genetic manipulation of yeast cells in the laboratory, University of Michigan biologists show that most synonymous mutations are strongly harmful. The strong non-neutrality of most synonymous mutations—if found to be true for other genes and in other organisms—would have major implications for the study of human disease mechanisms, population and conservation biology, and evolutionary biology, according to the study authors. “Since the genetic code was solved in the 1960s, synonymous mutations have been generally thought to be benign. We now show that this belief is false,” said study senior author Jianzhi “George” Zhang, the Marshall W. Nirenberg Collegiate Professor in the U-M Department of Ecology and Evolutionary Biology. “Because many biological conclusions rely on the presumption that synonymous mutations are neutral, its invalidation has broad implications. For example, synonymous mutations are generally ignored in the study of disease-causing mutations, but they might be an underappreciated and common mechanism.” In the past decade, anecdotal evidence has suggested that some synonymous mutations are nonneutral. Zhang and his colleagues wanted to know if such cases are the exception or the rule. Yeast Study Reveals Harmful Synonymous Mutations They chose to address this question in budding yeast (Saccharomyces cerevisiae) because the organism’s short generation time (about 80 minutes) and small size allowed them to measure the effects of a large number of synonymous mutations relatively quickly, precisely, and conveniently. They used CRISPR/Cas9 genome editing to construct more than 8,000 mutant yeast strains, each carrying a synonymous, nonsynonymous or nonsense mutation in one of 21 genes the researchers targeted. Then they quantified the “fitness” of each mutant strain by measuring how quickly it reproduced relative to the nonmutant strain. Darwinian fitness, simply put, refers to the number of offspring an individual has. In this case, measuring the reproductive rates of the yeast strains showed whether the mutations were beneficial, harmful, or neutral. Surprising Results: Most Synonymous Mutations Are Deleterious To their surprise, the researchers found that 75.9% of synonymous mutations were significantly deleterious, while 1.3% were significantly beneficial. “The previous anecdotes of nonneutral synonymous mutations turned out to be the tip of the iceberg,” said study lead author Xukang Shen, a graduate student research assistant in Zhang’s lab. “We also studied the mechanisms through which synonymous mutations affect fitness and found that at least one reason is that both synonymous and nonsynonymous mutations alter the gene-expression level, and the extent of this expression effect predicts the fitness effect.” Zhang said the researchers knew beforehand, based on the anecdotal reports, that some synonymous mutations would likely turn out to be nonneutral. “But we were shocked by the large number of such mutations,” he said. “Our results imply that synonymous mutations are nearly as important as nonsynonymous mutations in causing disease and call for strengthened effort in predicting and identifying pathogenic synonymous mutations.” The U-M-led team said that while there is no particular reason why their results would be restricted to yeast, confirmations in diverse organisms are required to verify the generality of their findings. Reference: “Synonymous mutations in representative yeast genes are mostly strongly non-neutral” by Xukang Shen, Siliang Song, Chuan Li and Jianzhi Zhang, 8 June 2022, Nature. DOI: 10.1038/s41586-022-04823-w The study was funded by the U.S. National Institutes of Health.
A team of UC scientists reconstituted the circadian clock of cyanobacteria in a test tube, enabling them to study the molecular interactions of the clock proteins in real time and understand how these interactions enable the clock to exert control over gene expression. Credit: Andy LiWang The reconstituted biological clock maintains daily cycles for days on end, allowing researchers to study the interactions of its component parts. Daily cycles in virtually every aspect of our physiology are driven by biological clocks (also called circadian clocks) in our cells. The cyclical interactions of clock proteins keep the biological rhythms of life in tune with the daily cycle of night and day, and this happens not only in humans and other complex animals but even in simple, single-celled organisms such as cyanobacteria. A team of scientists has now reconstituted the circadian clock of cyanobacteria in a test tube, enabling them to study rhythmic interactions of the clock proteins in real time and understand how these interactions enable the clock to exert control over gene expression. Researchers in three labs at UC Santa Cruz, UC Merced, and UC San Diego collaborated on the study, published on October 8, 2021, in Science. “Reconstituting a complicated biological process like the circadian clock from the ground up has really helped us learn how the clock proteins work together and will enable a much deeper understanding of circadian rhythms,” said Carrie Partch, professor of chemistry and biochemistry at UC Santa Cruz and a corresponding author of the study. Partch noted that the molecular details of circadian clocks are remarkably similar from cyanobacteria to humans. Having a functioning clock that can be studied in the test tube (“in vitro”) instead of in living cells (“in vivo”) provides a powerful platform for exploring the clock’s mechanisms and how it responds to changes. The team conducted experiments in living cells to confirm that their in vitro results are consistent with the way the clock operates in live cyanobacteria. “These results were so surprising because it is common to have results in vitro that are somewhat inconsistent with what is observed in vivo. The interior of live cells is highly complex, in stark contrast to the much simpler conditions in vitro,” said Andy LiWang, professor of chemistry and biochemistry at UC Merced and a corresponding author of the paper. The new study builds on previous work by Japanese researchers, who in 2005 reconstituted the cyanobacterial circadian oscillator, the basic 24-hour timekeeping loop of the clock. The oscillator consists of three related proteins: KaiA, KaiB, and KaiC. In living cells, signals from the oscillator are transmitted through other proteins to control the expression of genes in a circadian cycle. The new in vitro clock includes, in addition to the oscillator proteins, two kinase proteins (SasA and CikA), whose activities are modified by interacting with the oscillator, as well as a DNA-binding protein (RpaA) and its DNA target. “SasA and CikA respectively activate and deactivate RpaA such that it rhythmically binds and unbinds DNA,” LiWang explained. “In cyanobacteria, this rhythmic binding and unbinding at over 100 different sites in their genome activates and deactivates the expression of numerous genes important to health and survival.” Using fluorescent labeling techniques, the researchers were able to track the interactions between all of these clock components as the whole system oscillates with a circadian rhythm for many days and even weeks. This system enabled the team to determine how SasA and CikA enhance the robustness of the oscillator, keeping it ticking under conditions in which the KaiABC proteins by themselves would stop oscillating. The researchers also used the in vitro system to explore the genetic origins of clock disruption in an arrhythmic strain of cyanobacteria. They identified a single mutation in the gene for RpaA that reduces the protein’s DNA-binding efficiency. “A single amino acid change in the transcription factor makes the cell lose the rhythm of gene expression, even though its clock is intact,” said coauthor Susan Golden, director of the Center for Circadian Biology at UC San Diego, of which Partch and LiWang are also members. “The real beauty of this project is how the team drawn from three UC campuses came together to pool approaches toward answering how a cell can tell time,” she added. “The active collaboration extended well beyond the principal investigators, with the students and postdocs who were trained in different disciplines conferring among themselves to share genetics, structural biology, and biophysical data, explaining to one another the significance of their findings. The cross-discipline communication was as important to the success of the project as the impressive skills of the researchers.” Reference: “Reconstitution of an intact clock reveals mechanisms of circadian timekeeping” by Archana G. Chavan, Jeffrey A. Swan, Joel Heisler, Cigdem Sancar, Dustin C. Ernst, Mingxu Fang, Joseph G. Palacios, Rebecca K. Spangler, Clive R. Bagshaw, Sarvind Tripathi, Priya Crosby, Susan S. Golden, Carrie L. Partch and Andy LiWang, 8 October 2021, Science. DOI: 10.1126/science.abd4453 The authors of the paper include first authors Archana Chavan and Joel Heisler at UC Merced and Jeffrey Swan at UC Santa Cruz, as well as coauthors Cigdem Sancar, Dustin Ernst, and Mingxu Fang at UC San Diego, and Joseph Palacios, Rebecca Spangler, Clive Bagshaw, Sarvind Tripathi, and Priya Crosby at UC Santa Cruz. This work was supported by the National Institutes of Health and the National Science Foundation.
New research found that imbalances in RNA communication, both within and from outside the organism, can shorten the lifespan of Caenorhabditis elegans, offering new insights into the aging process and genetic regulation. Research on the roundworm species C. elegans has demonstrated that disruptions in the transfer of RNA between cells across various tissues can lead to a shortened lifespan. Cells in various tissues interact by sharing RNA molecules. A study conducted by scientists from the State University of Campinas (UNICAMP) in Brazil, using the roundworm species Caenorhabditis elegans, discovered that disruptions in this method of communication can lead to a reduced lifespan for the organism. The study was recently published in the journal Gene. The findings contribute to a better understanding of the aging process and associated diseases. “Previous research showed that some types of RNA can be transferred from one cell to another, mediating intertissue communication, of the kind that occurs with proteins and metabolites, for example. This is considered a mechanism for signaling between organs or neighboring cells. It’s part [of the physiopathology] of several diseases and of the organism’s normal functioning,” said Marcelo Mori, corresponding author of the article and a professor at the Institute of Biology (IB-UNICAMP). “What wasn’t clear and we’ve now succeeded in proving is that changes in the pattern of this ‘conversation’ between RNA molecules can affect aging.” The study was conducted at UNICAMP’s Obesity and Comorbidities Research Center (OCRC), one of the Research, Innovation, and Dissemination Centers (RIDCs) funded by FAPESP. It was also funded via a project for which Mori is the principal investigator. “This communication mechanism has to be well adjusted to give the organism an adequate lifespan. In the study, we found that if any tissue happens to increase its capacity to absorb some types of RNA from the extracellular medium, this ends up having an impact on the organism’s lifespan,” Mori said. The researchers demonstrated that the reduction in lifespan was due not only to the disruption of RNA-based communication between tissues in the same organism, he added, but also to an increase in the capacity for RNA uptake from the environment – bacteria in microbiota, for example. As they explain in the article, “Our data support the notion that systemic RNA signaling must be tightly regulated, and unbalancing that process provokes a reduction in lifespan. We termed this phenomenon Intercellular/Extracellular Systemic RNA imbalance (InExS).” Breaking the rules Mori explained that the decision to research the intercellular RNA transport mechanism was inspired by the discovery of RNA interference, for which American scientists Andrew Fire and Craig Mello won the 2006 Nobel Prize in Physiology and Medicine. They injected double-stranded RNA into C. elegans to “silence” genes with great precision. “They found that the silencing mechanism affected genes in other tissues as well as the tissue involved and that it was transmitted to following generations,” he said. The discovery of RNA interference elucidated the mechanisms underlying RNA transfer between cells in an organism and between the organism and the environment. It also relativized a central dogma of molecular biology. Until then, the information embodied by the genetic code was believed to flow only from DNA to RNA, and from there to proteins, but the work of Fire and Craig revealed that double-stranded RNA can block this flow. Messenger RNA is destroyed by RNA interference, which silences specific genes without altering the DNA sequence, showing that RNA can also perform a regulatory function in the genome. Although the human genome comprises some 30,000 genes, only a few are used in each cell to synthesize proteins. A large proportion play a regulatory role, influencing the expression of other genes. Balance is all “We wanted to understand how this process could interfere with important physiological functions linked to aging. In C. elegans, RNA transfer between cells involves what are known as systemic RNA interference defective (SID) genes [responsible for different stages in RNA absorption and export]. We observed that a gene expression pattern associated with this pathway in specific tissues changed during aging. The messenger RNA that encodes the protein SID-1 [fundamental to cellular uptake of RNA], for example, increased in some tissues and decreased in others,” Mori said. To find out more about the role of RNA in intertissue signaling, the researchers conducted experiments in which they manipulated the expression of the protein SID-1 in specific tissues of C. elegans, such as neuronal, intestinal, and muscle cells, in order to change its function. “We found mutants without the SID-1 function to be as healthy as wild-type worms, whereas overexpression of SID-1 in the gut, muscles, or neurons shortened the lifespan of the worms concerned. We also found that a lifespan reduction correlated with overexpression of other proteins in the RNA transport pathway, such as SID-2 and SID-5,” he said. The dysregulation may reside in the distribution of RNA to tissue. “To dysregulate RNA distribution in the worms, we increased SID-1 expression in specific tissues [gut, muscles, and neurons] and found that channeling it to a specific organ led to a lifespan reduction,” he said. “We also showed that this imbalance in RNA transfer led to loss of function in the pathway that produces microRNAs [small pieces of non-coding RNA with a regulatory function]. It’s as if the larger number of RNAs transported to these tissues created a kind of competition in which the production of microRNAs was the loser. Previous research had already shown that loss of function in microRNA production led to a reduction of lifespan.” The UNICAMP group also investigated exogenous RNA transfer (between the outside environment and the organism). As in the previous experiments, a reduction of lifespan correlated with overexpression of SID-2, which mediates RNA uptake from the gut, and with excessive RNA production by bacteria on which the worms feed and which end up in its gut microbiota. “We believe the worms may use exogenous RNA to monitor microorganisms in the environment, but negative effects may ensue when excessive amounts are absorbed by their tissue,” Mori said. “When we forced bacteria in the laboratory to express more double-stranded RNA, the worms’ lifespan decreased. Excessive RNA transfer interferes with homeostasis and endogenous RNA production, accelerating the aging process.” Reference: “Tissue-specific overexpression of systemic RNA interference components limits lifespan in C. elegans” by Henrique Camara, Mehmet Dinçer Inan, Carlos A. Vergani-Junior, Silas Pinto, Thiago L. Knittel, Willian G. Salgueiro, Guilherme Tonon-da-Silva, Juliana Ramirez, Diogo de Moraes, Deisi L. Braga, Evandro A. De-Souza and Marcelo A. Mori, 18 November 2023, Gene. DOI: 10.1016/j.gene.2023.148014 The study was funded by the São Paulo Research Foundation.
DVDV1551RTWW78V
ESG-compliant OEM manufacturer in Taiwan 》your go-to partner for comfort-focused OEM/ODM solutionsTaiwan neck support pillow OEM 》where modern manufacturing meets timeless qualityTaiwan insole ODM manufacturing factory for global brands 》trusted by global brands for reliable quality and flexibility