Introduction – Company Background
GuangXin Industrial Co., Ltd. is a specialized manufacturer dedicated to the development and production of high-quality insoles.
With a strong foundation in material science and footwear ergonomics, we serve as a trusted partner for global brands seeking reliable insole solutions that combine comfort, functionality, and design.
With years of experience in insole production and OEM/ODM services, GuangXin has successfully supported a wide range of clients across various industries—including sportswear, health & wellness, orthopedic care, and daily footwear.
From initial prototyping to mass production, we provide comprehensive support tailored to each client’s market and application needs.
At GuangXin, we are committed to quality, innovation, and sustainable development. Every insole we produce reflects our dedication to precision craftsmanship, forward-thinking design, and ESG-driven practices.
By integrating eco-friendly materials, clean production processes, and responsible sourcing, we help our partners meet both market demand and environmental goals.
Core Strengths in Insole Manufacturing
At GuangXin Industrial, our core strength lies in our deep expertise and versatility in insole and pillow manufacturing. We specialize in working with a wide range of materials, including PU (polyurethane), natural latex, and advanced graphene composites, to develop insoles and pillows that meet diverse performance, comfort, and health-support needs.
Whether it's cushioning, support, breathability, or antibacterial function, we tailor material selection to the exact requirements of each project-whether for foot wellness or ergonomic sleep products.
We provide end-to-end manufacturing capabilities under one roof—covering every stage from material sourcing and foaming, to precision molding, lamination, cutting, sewing, and strict quality control. This full-process control not only ensures product consistency and durability, but also allows for faster lead times and better customization flexibility.
With our flexible production capacity, we accommodate both small batch custom orders and high-volume mass production with equal efficiency. Whether you're a startup launching your first insole or pillow line, or a global brand scaling up to meet market demand, GuangXin is equipped to deliver reliable OEM/ODM solutions that grow with your business.
Customization & OEM/ODM Flexibility
GuangXin offers exceptional flexibility in customization and OEM/ODM services, empowering our partners to create insole products that truly align with their brand identity and target market. We develop insoles tailored to specific foot shapes, end-user needs, and regional market preferences, ensuring optimal fit and functionality.
Our team supports comprehensive branding solutions, including logo printing, custom packaging, and product integration support for marketing campaigns. Whether you're launching a new product line or upgrading an existing one, we help your vision come to life with attention to detail and consistent brand presentation.
With fast prototyping services and efficient lead times, GuangXin helps reduce your time-to-market and respond quickly to evolving trends or seasonal demands. From concept to final production, we offer agile support that keeps you ahead of the competition.
Quality Assurance & Certifications
Quality is at the heart of everything we do. GuangXin implements a rigorous quality control system at every stage of production—ensuring that each insole meets the highest standards of consistency, comfort, and durability.
We provide a variety of in-house and third-party testing options, including antibacterial performance, odor control, durability testing, and eco-safety verification, to meet the specific needs of our clients and markets.
Our products are fully compliant with international safety and environmental standards, such as REACH, RoHS, and other applicable export regulations. This ensures seamless entry into global markets while supporting your ESG and product safety commitments.
ESG-Oriented Sustainable Production
At GuangXin Industrial, we are committed to integrating ESG (Environmental, Social, and Governance) values into every step of our manufacturing process. We actively pursue eco-conscious practices by utilizing eco-friendly materials and adopting low-carbon production methods to reduce environmental impact.
To support circular economy goals, we offer recycled and upcycled material options, including innovative applications such as recycled glass and repurposed LCD panel glass. These materials are processed using advanced techniques to retain performance while reducing waste—contributing to a more sustainable supply chain.
We also work closely with our partners to support their ESG compliance and sustainability reporting needs, providing documentation, traceability, and material data upon request. Whether you're aiming to meet corporate sustainability targets or align with global green regulations, GuangXin is your trusted manufacturing ally in building a better, greener future.
Let’s Build Your Next Insole Success Together
Looking for a reliable insole manufacturing partner that understands customization, quality, and flexibility? GuangXin Industrial Co., Ltd. specializes in high-performance insole production, offering tailored solutions for brands across the globe. Whether you're launching a new insole collection or expanding your existing product line, we provide OEM/ODM services built around your unique design and performance goals.
From small-batch custom orders to full-scale mass production, our flexible insole manufacturing capabilities adapt to your business needs. With expertise in PU, latex, and graphene insole materials, we turn ideas into functional, comfortable, and market-ready insoles that deliver value.
Contact us today to discuss your next insole project. Let GuangXin help you create custom insoles that stand out, perform better, and reflect your brand’s commitment to comfort, quality, and sustainability.
🔗 Learn more or get in touch:
🌐 Website: https://www.deryou-tw.com/
📧 Email: shela.a9119@msa.hinet.net
📘 Facebook: facebook.com/deryou.tw
📷 Instagram: instagram.com/deryou.tw
Soft-touch pillow OEM service in Indonesia
Are you looking for a trusted and experienced manufacturing partner that can bring your comfort-focused product ideas to life? GuangXin Industrial Co., Ltd. is your ideal OEM/ODM supplier, specializing in insole production, pillow manufacturing, and advanced graphene product design.
With decades of experience in insole OEM/ODM, we provide full-service manufacturing—from PU and latex to cutting-edge graphene-infused insoles—customized to meet your performance, support, and breathability requirements. Our production process is vertically integrated, covering everything from material sourcing and foaming to molding, cutting, and strict quality control.Indonesia orthopedic insole OEM manufacturer
Beyond insoles, GuangXin also offers pillow OEM/ODM services with a focus on ergonomic comfort and functional innovation. Whether you need memory foam, latex, or smart material integration for neck and sleep support, we deliver tailor-made solutions that reflect your brand’s values.
We are especially proud to lead the way in ESG-driven insole development. Through the use of recycled materials—such as repurposed LCD glass—and low-carbon production processes, we help our partners meet sustainability goals without compromising product quality. Our ESG insole solutions are designed not only for comfort but also for compliance with global environmental standards.Eco-friendly pillow OEM manufacturer Indonesia
At GuangXin, we don’t just manufacture products—we create long-term value for your brand. Whether you're developing your first product line or scaling up globally, our flexible production capabilities and collaborative approach will help you go further, faster.Innovative insole ODM solutions in Thailand
📩 Contact us today to learn how our insole OEM, pillow ODM, and graphene product design services can elevate your product offering—while aligning with the sustainability expectations of modern consumers.Thailand anti-odor insole OEM service
A study uncovered the genetic basis behind the gliding ability in mammals, particularly marsupials, by identifying key changes in DNA enhancers near the Emx2 gene, suggesting a common evolutionary strategy for developing flight capabilities in various species. Credit: Joe MacDonald A crucial gene has been identified that clarifies the repeated emergence of gliding capabilities throughout the evolution of marsupials. People say “When pigs fly” to describe the impossible. But even if most mammals are landlubbers, the ability to glide or fly has evolved again and again during mammalian evolution, in species ranging from bats to flying squirrels. How did that come about? In a study recently published in the journal Nature, a team of researchers led by Princeton University and Baylor College of Medicine explains the genomic and developmental basis of the patagium, the thin skin membrane that allows some mammalian species to soar through the air. “We don’t quite understand how novel traits and adaptations originate from a molecular and genetic perspective. We wanted to investigate how an evolutionary novelty arises,” said co-corresponding author Dr. Ricardo Mallarino, assistant professor of molecular biology at Princeton. To better understand patagium evolution, the team focused on marsupials. That is because the ability to glide has developed repeatedly, using similar anatomical changes, in closely related marsupials like the sugar glider – a tiny marsupial small enough to fit in your pocket, and popular as an exotic pet. Genetic Insights into Gliding The Baylor team led the genome sequencing for 15 marsupial species, determining the DNA sequences in both gliding species and their non-gliding relatives. Comparing those sequences revealed accelerated evolution near a gene called Emx2. “What’s interesting is that the sequence of the gene itself doesn’t seem to be where the most relevant changes are taking place. Instead, the key changes are in short DNA sequences, called ‘enhancers,’ that lie nearby in the genome. It’s those changing enhancers that alter how and where in the body Emx2 is active, and that drives the evolution of gliding,” said co-corresponding author Dr. Erez Lieberman Aiden, professor of molecular and human genetics and director of the Center for Genome Architecture at Baylor. Evolutionary Mechanisms and Experimental Approaches “Understanding the underlying changes that happen at the genomic level to give rise to these convergent traits is important because it can tell us whether evolution is targeting the path of least resistance. You can have the same outcome but different paths to get there,” said co-first author Jorge Moreno, a graduate student in Mallarino’s lab. Next, the researchers wanted to test these ideas. To do so, they used one of the most unique characteristics of marsupials – their pouch. “Marsupial joeys are born at a much earlier stage in development than typical mammals,” said co-first author Dr. Olga Dudchenko, assistant professor of molecular and human genetics at Baylor and a researcher at the Center for Theoretical Biological Physics at Rice University. “Instead of continuing development in their mother’s womb, they crawl into her pouch, and stay there until they are ready to take on the world independently. The fact that they are right there in the pouch makes it much easier to study how individual genes, like Emx2, affect the marsupial’s development.” The researchers showed that Emx2 gives rise to the marsupial patagium using a genetic program that probably exists in all mammals. For instance, Emx2 is active in the skin on the sides of both mice and sugar gliders, but in sugar gliders, it is expressed for far longer. As Dudchenko, also at the Center for Genome Architecture at Baylor, notes, “By modifying those critical Emx2 enhancers, one species after another has tapped into this universal program in order to develop the ability to glide.” Encouraging news for pigs hoping to reach for the skies. Reference: “Emx2 underlies the development and evolution of marsupial gliding membranes” by Jorge A. Moreno, Olga Dudchenko, Charles Y. Feigin, Sarah A. Mereby, Zhuoxin Chen, Raul Ramos, Axel A. Almet, Harsha Sen, Benjamin J. Brack, Matthew R. Johnson, Sha Li, Wei Wang, Jenna M. Gaska, Alexander Ploss, David Weisz, Arina D. Omer, Weijie Yao, Zane Colaric, Parwinder Kaur, Judy St. Leger, Qing Nie, Alexandria Mena, Joseph P. Flanagan, Greta Keller, Thomas Sanger, Bruce Ostrow, Maksim V. Plikus, Evgeny Z. Kvon, Erez Lieberman Aiden and Ricardo Mallarino, 24 April 2024, Nature. DOI: 10.1038/s41586-024-07305-3 This work was supported by the National Institutes of Health (R35GM133758, UM1HG009375, RM1HG011016-01A1, F32 GM139240-01, T32GM007388, R01-AR079150); the Searle Scholars Program; the Sloan Foundation and the Vallee Scholars Program; the Welch Foundation (Q-1866), the U.S.-Israel Binational Science Foundation (2019276); the National Science Foundation (DGE-2039656, NSF DBI-2021795, NSF PHY-2210291); the LEO Foundation (LF-AW-RAM-19-400008, LF-OC-20-000611); and the W.M. Keck Foundation (WMKF-5634988).
Green fluorescence in a mouse brain highlights clusters of striosomal neurons (yellow arrow) that send distant connections, also green, to cells that produce dopamine in the midbrain (yellow arrowhead). Striosomal gene activation is correlated with excessive repetitive behaviors. Credit: Jill Crittenden Graybiel lab identifies genes linked to abnormal repetitive behaviors often seen in models of addiction and schizophrenia. Extreme repetitive behaviors such as hand-flapping, body-rocking, skin-picking, and sniffing are common to a number of brain disorders including autism, schizophrenia, Huntington’s disease, and drug addiction. These behaviors, termed stereotypies, are also apparent in animal models of drug addiction and autism. In a new study published in the European Journal of Neuroscience, researchers at the McGovern Institute for Brain Research have identified genes that are activated in the brain prior to the initiation of these severe repetitive behaviors. “Our lab has found a small set of genes that are regulated in relation to the development of stereotypic behaviors in an animal model of drug addiction,” says MIT Institute Professor Ann Graybiel, who is the senior author of the paper. “We were surprised and interested to see that one of these genes is a susceptibility gene for schizophrenia. This finding might help to understand the biological basis of repetitive, stereotypic behaviors as seen in a range of neurologic and neuropsychiatric disorders, and in otherwise ‘typical’ people under stress.” A shared molecular pathway In work led by Research Scientist Jill Crittenden, scientists in the Graybiel lab exposed mice to amphetamine, a psychomotor stimulant that drives hyperactivity and confined stereotypies in humans and in laboratory animals and that is used to model symptoms of schizophrenia. They found that stimulant exposure that drives the most prolonged repetitive behaviors led to activation of genes regulated by Neuregulin 1, a signaling molecule that is important for a variety of cellular functions including neuronal development and plasticity. Neuregulin 1 gene mutations are risk factors for schizophrenia. The new findings highlight a shared molecular and circuit pathway for stereotypies that are caused by drugs of abuse and in brain disorders, and have implications for why stimulant intoxication is a risk factor for the onset of schizophrenia. “Experimental treatment with amphetamine has long been used in studies on rodents and other animals in tests to find better treatments for schizophrenia in humans, because there are some behavioral similarities across the two otherwise very different contexts,” explains Graybiel, who is also an investigator at the McGovern Institute and a professor of brain and cognitive sciences at MIT. “It was striking to find Neuregulin 1 — potentially one hint to shared mechanisms underlying some of these similarities.” Drug exposure linked to repetitive behaviors Although many studies have measured gene expression changes in animal models of drug addiction, this study is the first to evaluate genome-wide changes specifically associated with restricted repetitive behaviors. Stereotypies are difficult to measure without labor-intensive direct observation, because they consist of fine movements and idiosyncratic behaviors. In this study, the authors administered amphetamine (or saline control) to mice and then measured with photobeam-breaks how much they ran around. The researchers identified prolonged periods when the mice were not running around (i.e., were potentially engaged in confined stereotypies), and then they videotaped the mice during these periods to observationally score the severity of restricted repetitive behaviors (e.g., sniffing or licking stereotypies). They gave amphetamine to each mouse once a day for 21 days and found that, on average, mice showed very little stereotypy on the first day of drug exposure but that, by the seventh day of exposure, all of the mice showed a prolonged period of stereotypy that gradually became shorter and shorter over the subsequent two weeks. “We were surprised to see the stereotypy diminishing after one week of treatment. We had actually planned a study based on our expectation that the repetitive behaviors would become more intense, but then we realized that this was an opportunity to look at what gene changes were unique to that day of high stereotypy,” says first author Jill Crittenden. The authors compared gene expression changes in the brains of mice treated with amphetamine for one day, seven days, or 21 days. They hypothesized that the gene changes associated specifically with high-stereotypy-associated seven days of drug treatment were the most likely to underlie extreme repetitive behaviors and could identify risk-factor genes for such symptoms in disease. A shared anatomical pathway Previous work from the Graybiel lab has shown that stereotypy is directly correlated to circumscribed gene activation in the striatum, a forebrain region that is key for habit formation. In animals with the most intense stereotypy, most of the striatum does not show gene activation, but immediate early gene induction remains high in clusters of cells called striosomes. Striosomes have recently been shown to have powerful control over cells that release dopamine, a neuromodulator that is severely disrupted in drug addiction and in schizophrenia. Strikingly, striosomes contain high levels of Neuregulin 1. “Our new data suggest that the upregulation of Neuregulin-responsive genes in animals with severely repetitive behaviors reflects gene changes in the striosomal neurons that control the release of dopamine,” Crittenden explains. “Dopamine can directly impact whether an animal repeats an action or explores new actions, so our study highlights a potential role for a striosomal circuit in controlling action-selection in health and in neuropsychiatric disease.” Patterns of behavior and gene expression Striatal gene expression levels were measured by sequencing messenger RNAs (mRNAs) in dissected brain tissue. mRNAs are read out from “active” genes to instruct protein-synthesis machinery in how to make the protein that corresponds to the gene’s sequence. Proteins are the main constituents of a cell, thereby controlling each cell’s function. The number of times a particular mRNA sequence is found reflects the frequency at which the gene was being read out at the time that the cellular material was collected. To identify genes that were read out into mRNA before the period of prolonged stereotypy, the researchers collected brain tissue 20 minutes after amphetamine injection, which is about 30 minutes before peak stereotypy. They then identified which genes had significantly different levels of corresponding mRNAs in drug-treated mice than in mice treated with saline. A wide variety of genes showed modest mRNA increases after the first amphetamine exposure, which induced mild hyperactivity and a range of behaviors such as walking, sniffing, and rearing in the mice. By the seventh day of treatment, all of the mice were engaged for prolonged periods in one specific repetitive behavior, such as sniffing the wall. Likewise, there were fewer genes that were activated by the seventh day relative to the first treatment day, but they were strongly activated in all mice that received the stereotypy-inducing amphetamine treatment. By the 21st day of treatment, the stereotypy behaviors were less intense, as was the gene upregulation — fewer genes were strongly activated, and more were repressed, relative to the other treatments. “It seemed that the mice had developed tolerance to the drug, both in terms of their behavioral response and in terms of their gene activation response,” says Crittenden. “Trying to seek patterns of gene regulation starting with behavior is correlative work, and we did not prove ‘causality’ in this first small study,” explains Graybiel. “But we hope that the striking parallels between the scope and selectivity of the mRNA and behavioral changes that we detected will help in further work on the tremendously challenging goal of treating addiction.” Reference: “Striatal transcriptome changes linked to drug‐induced repetitive behaviors” by Jill R. Crittenden, Theresa A. Gipson, Anne C. Smith, Hilary A. Bowden, Ferah Yildirim, Kyle B. Fischer, Michael Yim, David E. Housman and Ann M. Graybiel, 23 March 2021, European Journal of Neuroscience. DOI: 10.1111/ejn.15116 This work was funded by the National Institute of Child Health and Human Development, the Saks-Kavanaugh Foundation, the Broderick Fund for Phytocannabinoid Research at MIT, the James and Pat Poitras Research Fund, The Simons Foundation, and The Stanley Center for Psychiatric Research at the Broad Institute.
A new study sequencing the genome of four species of sifakas (Propithecus), a genus of lemurs found in Madagascar’s forests, reveals that these animals’ taste for leaves runs all the way to their genes, which are also more diverse than expected for an endangered species. Credit: Lydia Greene, Duke University Digestive genes and anatomy are adapted to tough leaves, fruit, and even pine needles. Fruits and veggies are good for you and if you are a lemur, they may even help mitigate the effects of habitat loss. A new study sequencing the genome of four species of sifakas, a genus of lemurs found only in Madagascar’s forests, reveals that these animals’ taste for leaves runs all the way to their genes, which are also more diverse than expected for an endangered species. Sifakas are folivores, meaning that the bulk of their diet is composed of leaves. Leaves can be difficult to digest and full of toxic compounds meant to prevent them from being eaten. Unlike our carefully selected spinach, tree leaves also don’t taste great, and are not very nutritious. Because of that, leaf-eaters typically have all sorts of adaptations, such as a longer digestive tract with special pouches where bacteria help break down the food. In a new study appearing April 23 in Science Advances, researchers sequenced genomes from Coquerel’s (Propithecus coquereli), Verreaux’s (P. verreauxi), golden-crowned (P. tattersalli), and diademed (P. diadema) sifakas. The individuals sequenced had been wild-born but were housed at the Duke Lemur Center, with the exception of two Verreaux’s sifakas, one wild and one born in captivity. These four species are found in different habitats in Madagascar, ranging from arid deciduous forests to rainforests, but share a similar diet. A new study sequencing the genome of four species of sifakas (Propithecus), a genus of lemurs found in Madagascar’s forests, reveals that these animals’ taste for leaves runs all the way to their genes, which are also more diverse than expected for an endangered species. Credit: Lydia Greene, Duke University The genomes showed molecular evidence for adaptations to neutralize and eliminate leaves’ toxic compounds, optimize the absorption of nutrients, and detect bitter tastes. Their genome shows patterns of molecular evolution similar to those found in other distantly related herbivores, such as the colobus monkeys from Central Africa, and domestic cattle. Yet despite being such fine-tuned leaf-eating machines, sifakas can eat more than just leaves. They eat lots of fruits when those are in season and will also happily munch on flowers. “Sifakas can take advantage of foods that are higher energy and are more nutrient dense, and can fall back and subsist on leaves in times of scarcity,” said Elaine Guevara, assistant research professor of Evolutionary Anthropology at Duke University and lead author of the study. This dietary flexibility may have given them an advantage over their strictly leaves-only or fruit-only cousins in the face of threats such as forest fragmentation and disturbance. Indeed, the analysis also showed that sifakas are genetically more diverse than would be expected for a critically endangered species on an island of shrinking habitats. “These animals do seem to have very healthy levels of genetic diversity, which is very surprising,” said Guevara Guevara and her team gauged genome heterozygosity, which is a measure of genetic diversity and an indicator of population size. Species at high risk for extinction tend to have only small populations left, and very low heterozygosity. Sifakas do not follow this pattern and show far higher heterozygosity than other primates or other species of critically endangered mammals. Heterozygous populations tend to be more resilient to threats such as climate change, habitat loss, and new pathogens. However, sifakas have very long generation times, averaging 17 years, so the loss of genetic diversity may take decades to become obvious. Guevara says that the genetic diversity found in this study may actually reflect how healthy populations were 50 years ago, prior to a drastic increase in deforestation rates in Madagascar. “Sifakas are still critically endangered, their population numbers are decreasing, and habitat loss is accelerating drastically,” said Guevara. There is still room for optimism. By not being picky eaters, sifakas may be less sensitive to deforestation and habitat fragmentation than primates with more restricted diets, allowing them to survive in areas with less-than-pristine forests. “I’ve seen sifakas at the Lemur Center eat dead pine needles,” said Guevara. “Their diet is really flexible.” Their greater genetic diversity may therefore mean that there is still hope for sifakas, if their habitats receive and maintain protection and strategic management. “Sifakas still have a good chance if we act. Our results are all the more reason to do everything we can to help them,” said Guevara. Reference: “Comparative Genomic Analysis of Sifakas (Propithecus) Reveals Selection for Folivory and High Heterozygosity Despite Endangered Status” by Elaine E. Guevara, Timothy H. Webster, Richard R. Lawler, Brenda J. Bradley, Lydia K. Greene, Jeannin Ranaivonasy, Joelisoa Ratsirarson, R. Alan Harris, Yue Liu, Shwetha Murali, Muthuswamy Raveendran, Daniel S. T. Hughes, Donna M. Muzny, Anne D. Yoder, Kim C. Worley and Jeffrey Rogers, 23 April 2021, J. Science Advances. DOI: 10.1126/sciadv.abd2274 This work was funded by the Center for the Advanced Study of Human Paleobiology at The George Washington University, Duke University, and the Wenner-Gren Foundation. Genome sequencing and assembly were funded by National Human Genome Research Institute grant U54 HG003273 to Richard Gibbs (HGSC, Baylor College of Medicine).
DVDV1551RTWW78V
Breathable insole ODM development China 》expert-level OEM/ODM to support product innovationODM pillow factory in China 》minimizing lead time, maximizing product valueThailand ergonomic pillow OEM supplier 》helping your brand lead with innovation and integrity